The Pro-apoptotic STK38 Kinase Is a New Beclin1 Partner Positively Regulating Autophagy
نویسندگان
چکیده
Autophagy plays key roles in development, oncogenesis, cardiovascular, metabolic, and neurodegenerative diseases. Hence, understanding how autophagy is regulated can reveal opportunities to modify autophagy in a disease-relevant manner. Ideally, one would want to functionally define autophagy regulators whose enzymatic activity can potentially be modulated. Here, we describe the STK38 protein kinase (also termed NDR1) as a conserved regulator of autophagy. Using STK38 as bait in yeast-two-hybrid screens, we discovered STK38 as a novel binding partner of Beclin1, a key regulator of autophagy. By combining molecular, cell biological, and genetic approaches, we show that STK38 promotes autophagosome formation in human cells and in Drosophila. Upon autophagy induction, STK38-depleted cells display impaired LC3B-II conversion; reduced ATG14L, ATG12, and WIPI-1 puncta formation; and significantly decreased Vps34 activity, as judged by PI3P formation. Furthermore, we observed that STK38 supports the interaction of the exocyst component Exo84 with Beclin1 and RalB, which is required to initiate autophagosome formation. Upon studying the activation of STK38 during autophagy induction, we found that STK38 is stimulated in a MOB1- and exocyst-dependent manner. In contrast, RalB depletion triggers hyperactivation of STK38, resulting in STK38-dependent apoptosis under prolonged autophagy conditions. Together, our data establish STK38 as a conserved regulator of autophagy in human cells and flies. We also provide evidence demonstrating that STK38 and RalB assist the coordination between autophagic and apoptotic events upon autophagy induction, hence further proposing a role for STK38 in determining cellular fate in response to autophagic conditions.
منابع مشابه
Vitamin D3 induces autophagy of human myeloid leukemia cells.
Vitamin D3 causes potent suppression of various cancer cells; however, significant supraphysiological concentrations of this compound are required for antineoplastic effects. Current combinatorial therapies with vitamin D3 are restricted to differentiation effects. It remains uncertain if autophagy is involved in vitamin D3 inhibition on leukemia cells. Here we show that besides triggering diff...
متن کاملBH3-only proteins, Bmf and Bim, in autophagy
www.landesbioscience.com Cell Cycle 3453 Members of the Bcl-2 protein family that contain only the Bcl-2 homology (BH) domain 3 are inducers of cell death when overexpressed. One of these BH3only proteins, Bmf, was discovered because of its binding to the anti-apoptotic member Bcl-2, BclXL , Bcl-w, and Mcl-1. It is expressed in the pancreas, liver, kidney, and hematopoietic tissues and in many ...
متن کاملIdentification of ROCK1 kinase as a critical regulator of Beclin1 mediated autophagy during metabolic stress
The Ser/Thr Rho kinase 1 (ROCK1) is known to have major roles in a wide range of cellular activities, including those involved in tumour metastasis and apoptosis. Here we identify an indispensable function of ROCK1 in metabolic stress-induced autophagy. Applying a proteomics approach, we characterize Beclin1, a proximal component of the phosphoinositide 3-kinase class III lipid-kinase complex t...
متن کاملBeclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13
Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named "spautin-1" for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target th...
متن کاملDissociation of Bcl-2–Beclin1 Complex by Activated AMPK Enhances Cardiac Autophagy and Protects Against Cardiomyocyte Apoptosis in Diabetes
Diabetic cardiomyopathy is associated with suppression of cardiac autophagy, and activation of AMP-activated protein kinase (AMPK) restores cardiac autophagy and prevents cardiomyopathy in diabetic mice, albeit by an unknown mechanism. We hypothesized that AMPK-induced autophagy ameliorates diabetic cardiomyopathy by inhibiting cardiomyocyte apoptosis and examined the effects of AMPK on the int...
متن کامل